Articles
Register
Sign In
Search
CarolineAraki
@CarolineAraki
January 2020
1
50
Report
Determine o valor de x que satisfaz à equação log (x-3) na base 2 + log (x-2) na base 2 = 1
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
IgorFabricio19
Loga + logb = log(a.b) uma das propriedades, então:
log(x-3)+log(x-2)= 1(ambos estão na base 2)
(x-3).(x-2)=1
x²-5x+6=1
x²-5x+5=0
Δ=5
x' = 5+√5
x'' = 5-√5
1 votes
Thanks 1
CarolineAraki
Muitíssimo obrigado
More Questions From This User
See All
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
CarolineAraki
January 2020 | 0 Respostas
Responda
Recomendar perguntas
Deividyfreitas
May 2020 | 0 Respostas
BlackShot
May 2020 | 0 Respostas
Vanessakellen
May 2020 | 0 Respostas
Guiduarter
May 2020 | 0 Respostas
Mrzaine
May 2020 | 0 Respostas
O QUE SERIA AUTONOMIA?
Grazifer
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
a palavra rapidez formou se de qual derivacao
Celiana
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
Anatercia
May 2020 | 0 Respostas
×
Report "Determine o valor de x que satisfaz à equação log (x-3) na base 2 + log (x-2) na base 2 = 1.... Pergunta de ideia de CarolineAraki"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
log(x-3)+log(x-2)= 1(ambos estão na base 2)
(x-3).(x-2)=1
x²-5x+6=1
x²-5x+5=0
Δ=5
x' = 5+√5
x'' = 5-√5