Articles
Register
Sign In
Search
Emmaviolon2
Beginner
0
Followers
7
Questões
1
Respostas
Emmaviolon2
May 2019 | 1 Respostas
Bonjour, On considère une fonction f dérivable sur R et a un réel quelconque. 1. Donner une équation de la tangente, T, à la courbe de f au point d’abscisse a. 2. Donner une condition nécessaire et suffisante pour que T soit sécante avec chacun des axes du repère. 3. Déterminer, en fonction de a, les coordonnées des points d’intersection de T avec les axes du repère. Merci
Responda
Emmaviolon2
May 2019 | 1 Respostas
Bonjour, je n'arrive pas à faire cet exercice, malgré plusieurs essais.. On considère la fonction f définie sur l’intervalleI = ]0 ;+ ∞[, par : f(x) = (x^3-9x²+25x-27)/x 1. Montrer que f est dérivable sur l’intervalle I, et déterminer une expression de sa dérivée. 2. Un logiciel de calcul formel donne la factorisation suivante. (voir l'image) En déduire une expression factorisée de f'(x). 3. Étudier les variations de f sur l’intervalle I. 4. a. Déterminer une équation de la tangente, T, à la courbe de f au point d’abscisse 3. b. On définit, pour tout réel x, l’expression A(x) =(x-3)^3. Développer A(x). c. Étudier la position relative entre la courbe de f et T sur l’intervalle I.
Responda
Emmaviolon2
May 2019 | 1 Respostas
Bonjour, voici l'exercice: You are a candidate for the JUNIOR SECTION of the SOCRATES DEBATING SOCIETY. Record a three-minute-long speech on the subject of ‘Freedom’. Je n'y arrive pas, n'étant pas du tout sûr de moi. Merci d'avance !
Responda
Emmaviolon2
May 2019 | 1 Respostas
Bonjour, Je bloque sur cet exercice.. L’hexane est un alcane qui a pour formule brute C6H14. Il possède 5 isomères. 1. Donner les formules développées de 2 isomères ramifiés de l’hexane. 2. Donner les formules semi-développées des 2 isomères que vous avez choisis à la question 1. 3. Nommer ces molécules.
Responda
Emmaviolon2
May 2019 | 1 Respostas
Bonjour, voici le problème: Une association sportive compte parmi ses adhérents 48 garçons et 32 filles. Un déplacement est organise mais il n'y a que 20 places. Un tirage au sort a désigné 14 garçons et 6 filles. Le père d'une fille qui n'a pas été choisie pour ce déplacement dit que c'est honteux car les garçons ont été favorisés. Le président du club répond que pas du tout; c'est simplement dû au hasard. Qui a raison ? Expliquer. Je ne vois pas quoi faire, je ne peux pas utiliser une loi binomiale car c'est un tirage sans remise, et je ne peux pas faire un arbre pondéré à 20 branches étant sur ordinateur. Pour l'instant, j'ai simplement écris un texte expliquant qu'aucun n'avait tord ou raison, mais étant un exercice de maths, je sais que je dois le montrer mathématiquement, j'aurais besoin d'aide s'il vous plaît..
Responda
Emmaviolon2
May 2019 | 1 Respostas
4. True or false? Justify each answer with an element from the dialogue. The speaker’s experiences of love as the ideal solution are positive. 5. Listen to the recording again to answer the following questions quoting the document : a. According to the speaker, what two facts are associated with wisdom (sagesse)? b. What do people discover when they leave school? c. How does the speaker define ‘artistic temperament’? d. According to the speaker what are the dangers of conformity? 6. What is the speaker’s idea of ‘fun’? Je bloque sur ces questions, mais le reste du devoir est fais.. Je ne sais pas comment vous donner l'enregistrement, je l'ai en version MP3 mais je ne peux pas le mettre dans la question. Si certains sont au CNED, c'est le devoir 9 des 1er S... Merci d'avance !
Responda
Emmaviolon2
May 2019 | 1 Respostas
Bonjour je suis en première S et je n'arrive pas au petit a. de la question 1, j'ai fais le reste en m'aidant de la suite. Maxime utilise la rampe de skateboard ci-dessous pour s’entraîner. L’unité graphique est le mètre. Cette rampe est constituée de deux plans horizontaux d’une largeur de 1 mètre et d’un arc de parabole. L’objectif est de déterminer à quel(s) endroit(s) de la rampe Maxime « voit au-delà » de celle-ci. On cherche donc les points de la rampe situés à moins de 1,70 m du plan horizontal contenant les points les plus hauts de la rampe (1,70 m correspond à la hauteur des yeux de Maxime quand il est debout sur son skateboard). On notera f la fonction, définie sur [1 ; 11], représentée, dans le repère de la figure, par l’arc de parabole. On admet que : ► f (1) =f ( 11) =0 ► le minimum de f est −4 et il est atteint pour x = 6. On arrondira, si nécessaire, les résultats au centième. 1. a. Déduire des informations de l’énoncé la forme canonique de f (x) pour x ∈[1 ; 11]. b. En déduire la forme développée de f (x) J'ai l'image mais je ne sais pas comment l'insérer.. Merci de votre aide !
Responda
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.