================================================================
Em uma associação de resistores em paralelo o resistor equivalente é obtido usando-se a soma invertida de todas as resistências
[tex]\mathbf{\dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+ \ldots}[/tex]
No nosso caso
[tex]R_1=100\: \Omega\\\\R_2 = \dfrac{200}{3}\: \Omega[/tex]
[tex]\dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{1}{100}+\dfrac{1}{\dfrac{200}{3}}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{1}{100}+\dfrac{3}{200}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{2+3}{200}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{5}{200}\\\\\\5\cdot R_{eq}=200\cdot 1\\\\\\5\cdot R_{eq}=200\\\\\\R_{eq}=\dfrac{200}{5}\\\\\\\mathbf{R_{eq}=40\:\Omega}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
R = 40 Ω
================================================================
Em uma associação de resistores em paralelo o resistor equivalente é obtido usando-se a soma invertida de todas as resistências
[tex]\mathbf{\dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+ \ldots}[/tex]
No nosso caso
[tex]R_1=100\: \Omega\\\\R_2 = \dfrac{200}{3}\: \Omega[/tex]
[tex]\dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{1}{100}+\dfrac{1}{\dfrac{200}{3}}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{1}{100}+\dfrac{3}{200}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{2+3}{200}\\\\\\\dfrac{1}{R_{eq}}=\dfrac{5}{200}\\\\\\5\cdot R_{eq}=200\cdot 1\\\\\\5\cdot R_{eq}=200\\\\\\R_{eq}=\dfrac{200}{5}\\\\\\\mathbf{R_{eq}=40\:\Omega}[/tex]