Articles
Register
Sign In
Search
Flouuw
@Flouuw
April 2019
1
67
Report
Soit h la fonction définie sur [-2 ; 1] par h(x) = -x4(puissance) - 2x3 ( au cube) + 2x+1.
1.Calculer h'(x) et vérifier que h'(x) = (x+1)
² ( -4x + 2).
2. En déduire les variations de h sur [-2 ; 1].
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
Commentaires
Bonsoir,
1)
2)
3) Etude du signe de la dérivée h'(x) = (x+1)²(-4x+2) et variation de h sur [-2;1]
Racines de h'(x) : (x+1)² = 0 ==> x+1=0
==> x = -1
-4x+2 = 0 ==> 4x = 2
==> x = 2/4 = 1/2
2 votes
Thanks 2
More Questions From This User
See All
Flouuw
June 2021 | 0 Respostas
Responda
Flouuw
February 2021 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
Flouuw
April 2019 | 0 Respostas
Responda
×
Report "Soit h la fonction définie sur [-2 ; 1] par h(x) = -x4(puissance) - 2x3 ( au cube) + 2x+1.1.Calculer.... Pergunta de ideia de Flouuw"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
1)
2)
3) Etude du signe de la dérivée h'(x) = (x+1)²(-4x+2) et variation de h sur [-2;1]
Racines de h'(x) : (x+1)² = 0 ==> x+1=0
==> x = -1
-4x+2 = 0 ==> 4x = 2
==> x = 2/4 = 1/2