Articles
Register
Sign In
Search
000Clarissa000
@000Clarissa000
December 2019
2
36
Report
Calcule as raízes e o vertice, caso existam, das seguintes funções abaixo:
a) y = x² - 1
b) y = x² + 3x + 2
c) y = x² + x - 2
d) y = x² - 6x + 9
e) y = x² - 4x + 3
f) y = x² + 4x + 3
g) y = x² - x - 2
h) y = x² - 2x - 3
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
albertrieben
Boa noite Clarissa
a) f(x) = x² - 1
a = 1, b = 0, c = -1
raízes x1 = 1, x2 = -1
vértice Vx = -b/2a = 0 , Vy = f(0) = - 1
b) f(x) = x² + 3x + 2
a = 1, b = 3 , c = 2
(x + 2)*(x + 1) = 0
x1 = -2, x2 = -1
vértice Vx = -b/2a = -3/2 , Vy = f(-3/2) = 9/4 - 9/2 + 2 = -9/4 + 8/4 = -1/4
c) f(x) = x² + x - 2
a = 1 , b = 1, c = -2
(x - 1)*(x + 2) = 0
x1 = 1, x2 = -2
vérice Vx = -b/2a = -1/2, Vy = f(-1/2) = 1/4 - 2/4 - 8/4 = -9/4
d) f(x) = x² - 6x + 9
a = 1, b = -6 , c = 9
(x - 3)
² = 0
x1 = x2 = 3
vértice Vx = -b/2a = 6/2 = 3, Vy = f(3) = 0
e) f(x) = x² - 4x + 3
a = 1, b = -4, c = 3
(x - 3)*(x - 1) = 0
x1 = 3, x2 = 1
vértice vx = -b/2a = 4/2 = 2, Vy = f(2) = 4 - 8 + 3 = -1
f) f(x) = x² + 4x + 3
a = 1, b = 4, c = 3
(x + 3)*(x + 1) = 0
x1 = -3, x2 = -1
vértice Vx = -b/2a = -4/2 = -2, Vy = f(-2) = 4 - 8 + 3 = -1
g) f(x) = x² - x - 2
a = 1, b = -1 ,c = -2
(x - 2)*(x + 1) = 0
x1 = 2, x2 = -1
vértice Vx = -b/2a = 1/2 , Vy = f(1/2) = 1/4 - 2/4 - 8/4 = -9/4
h) f(x) = x² - 2x - 3
a = 1, b = -2 , c = -3
(x - 3)*(x + 1) = 0
x1 = 3, x1 = -1
vértice Vx = -b/2a = 2/2 = 1, Vy = f(1) = 1 - 2 - 3 = -4
2 votes
Thanks 1
Luzimarmelo
A) y = x² - 1
x² - 1= 0
a= 1 ; b= 0 c= -1
∆ = b² - 4.a.c
∆ = (0)² - 4.(1).(-1)
∆ = 4
x = -b ± √∆) / 2.a
x = - (0)± √4/ 2.(1)
x = ± 2/2
x'= 2/2
x'= 1
x"= -2/2
x"= -1
Raízes { 1 , -1 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (0)/ 2.(1)
Vx= 0/2
Vx = 0
Vy= - Δ/4.a
Vy= - (4)/4.(1)
Vy= -4/4
Vy= -1
Vértices= ( 0 , -1 )
b) y = x² + 3x + 2
x² + 3x + 2
a = 1 ; b = 3 ; c = 2
∆ = b² - 4.a.c
∆ = (3)² - 4.(1).(2)
∆= 9 -8
∆= 1
x = -b ± √∆) / 2.a
x = - (3)± √1/ 2.(1)
x = -3± 1/2
x' = -3 +1/2 → -2/2
x'= -1
x" = -3 -1/2 → -4/2
x" = -2
Raízes { -1 , -2 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (3)/ 2.(1)
Vx= -3/2
Vy= - Δ/4.a
Vy= - (1)/4.(1)
Vy= -1/4
Vértices = (-3/2 , -1/4)
c) y = x² + x - 2
x² +x - 2 = 0
a = 1 ; b = 1 ; c = -2
∆ = b² - 4.a.c
∆ = (-1)² - 4.(1).(-2)
∆= 1 +8
∆= 9
x = -b ± √∆) / 2.a
x = - (1)± √9/ 2.(1)
x = -1± 3/2
x' = -1+3/2 →2/2
x'= 1
x" = -1-3/2 → -4/2
x" = -2
Raízes { 1, -2 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (1)/ 2.(1)
Vx= -1/2
Vy= - Δ/4.a
Vy= - (9)/4.(1)
Vy= -9/4
Vértices= (-1/2 , -9/4)
d) y = x² - 6x + 9
x²-6x+9 = 0
a= 1 ; b= -6 ; c= 9
∆ = b² - 4.a.c
∆ = (-6)² - 4.(1).(9)
∆ = 36 -36
∆ = 0
x = -b ± √∆) / 2.a
x = - (-6)± √0/ 2.(1)
x = 6 ± 0/2
x' = x" = 3
As coordenadas do vértice:
Vx = - b/2a
Vx = - (-6)/ 2.(1)
Vx = 6/2
Vx = 3
Vy = - Δ/4.a
Vy = 0/4.(1)
Vy= 0
Vértices=(3, 0)
e) y = x² - 4x + 3
x² - 4x + 3=0
a = 1 ; b = -4 ; c = 3
∆ = b² - 4.a.c
∆ = (-4)² - 4.(1).(3)
∆ = 16 -12
∆ = 4
x = -b ± √∆) / 2.a
x = - (-4)± √4/ 2.(1)
x = 4 ± 2/2
x' = 4 +2/2 → 6/2
x'= 3
x" = 4 -2/2 → 2/2
x" = 1
Raízes : { 3 , 1}
As coordenadas do vértice:
Vx= - b/2a
Vx= - (-4)/ 2.(1)
Vx= 4/2
Vx = 2
Vy= - Δ/4.a
Vy= - (4)/4.(1)
Vy= -4/4
Vy= -1
Vértices= (2 , -1)
f) y = x² + 4x + 3
x²+4x+3=0
a =1 ; b = 4 ; c = 3
∆ = b² - 4.a.c
∆ = (4)² - 4.(1).(3)
∆ = 16 -12
∆ = 4
x = -b ± √∆) / 2.a
x = - (4)± √4/ 2.(1)
x = -4 ± 2/2
x' = -4 +2/2 →-2/2
x'= -1
x" = -4 -2/2 →-6/2
x" = -3
Raízes : { -1 , -3}
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (4)/ 2.(1)
Vx= -4/2
Vx = -2
Vy= - Δ/4.a
Vy= - (4)/4.(1)
Vy= -4/4
Vy= -1
Vértices= ( -2 , -1)
g) y = x² - x - 2
x² - x - 2=0
a = 1 ; b = -1 ; c = -2
∆ = b² - 4.a.c
∆ = (-1)² - 4.(1).(-2)
∆= 1+8
∆= 9
x = -b ± √∆) / 2.a
x = - (-1)± √9/ 2.(1)
x = 1± 3/2
x' = 1 + 3/2 → 4/2
x'= 2
x" = 1 - 3/2 → -2/2
x" = -1
Raízes { 2 , -1 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (-1)/ 2.(1)
Vx= 1/2
Vy= - Δ/4.a
Vy= - (9)/4.(1)
Vy= -9/4
Vértices= ( 1/2 , -9/4)
h) y = x² - 2x - 3
x² - 2x - 3=0
a = 1 ; b = -2 ; c = -3
∆ = b² - 4.a.c
∆ = (-2)² - 4.(1).(-3)
∆= 4+12
∆= 16
x = -b ± √∆) / 2.a
x = - (-2)± √16/ 2.(1)
x = 2 ± 4/2
x' = 2+4/2 →6/2
x'= 3
x" = 2 - 4/2 → -2/2
x" = -1
Raízes { 3 , -1 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (-2)/ 2.(1)
Vx= 2/2
Vx= 1
Vy= - Δ/4.a
Vy= - (16)/4.(1)
Vy= -16/4
Vy= - 4
Vértices = (1 , -4)
Bons estudos.
1 votes
Thanks 0
More Questions From This User
See All
000Clarissa000
December 2019 | 0 Respostas
Responda
000Clarissa000
December 2019 | 0 Respostas
Responda
000Clarissa000
December 2019 | 0 Respostas
Responda
000Clarissa000
December 2019 | 0 Respostas
Responda
000Clarissa000
December 2019 | 0 Respostas
Responda
000Clarissa000
December 2019 | 0 Respostas
Responda
000Clarissa000
November 2019 | 0 Respostas
O que contem a carta de Pero Vaz de Caminha? (maximo 5 linhas)
Responda
000Clarissa000
November 2019 | 0 Respostas
Voce acha que hoje exiate preconceito quanto a identidade das pessoas? sim ou nao? justifique sua resposta ( maximo 3 linhas)
Responda
000Clarissa000
November 2019 | 0 Respostas
Responda
000Clarissa000
November 2019 | 0 Respostas
Responda
Recomendar perguntas
Deividyfreitas
May 2020 | 0 Respostas
BlackShot
May 2020 | 0 Respostas
Vanessakellen
May 2020 | 0 Respostas
Guiduarter
May 2020 | 0 Respostas
Mrzaine
May 2020 | 0 Respostas
O QUE SERIA AUTONOMIA?
Grazifer
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
a palavra rapidez formou se de qual derivacao
Celiana
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
Anatercia
May 2020 | 0 Respostas
×
Report "Calcule as raízes e o vertice, caso existam, das seguintes funções abaixo: a) y = x² - 1 b) y = x² +.... Pergunta de ideia de 000Clarissa000"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
a) f(x) = x² - 1
a = 1, b = 0, c = -1
raízes x1 = 1, x2 = -1
vértice Vx = -b/2a = 0 , Vy = f(0) = - 1
b) f(x) = x² + 3x + 2
a = 1, b = 3 , c = 2
(x + 2)*(x + 1) = 0
x1 = -2, x2 = -1
vértice Vx = -b/2a = -3/2 , Vy = f(-3/2) = 9/4 - 9/2 + 2 = -9/4 + 8/4 = -1/4
c) f(x) = x² + x - 2
a = 1 , b = 1, c = -2
(x - 1)*(x + 2) = 0
x1 = 1, x2 = -2
vérice Vx = -b/2a = -1/2, Vy = f(-1/2) = 1/4 - 2/4 - 8/4 = -9/4
d) f(x) = x² - 6x + 9
a = 1, b = -6 , c = 9
(x - 3)² = 0
x1 = x2 = 3
vértice Vx = -b/2a = 6/2 = 3, Vy = f(3) = 0
e) f(x) = x² - 4x + 3
a = 1, b = -4, c = 3
(x - 3)*(x - 1) = 0
x1 = 3, x2 = 1
vértice vx = -b/2a = 4/2 = 2, Vy = f(2) = 4 - 8 + 3 = -1
f) f(x) = x² + 4x + 3
a = 1, b = 4, c = 3
(x + 3)*(x + 1) = 0
x1 = -3, x2 = -1
vértice Vx = -b/2a = -4/2 = -2, Vy = f(-2) = 4 - 8 + 3 = -1
g) f(x) = x² - x - 2
a = 1, b = -1 ,c = -2
(x - 2)*(x + 1) = 0
x1 = 2, x2 = -1
vértice Vx = -b/2a = 1/2 , Vy = f(1/2) = 1/4 - 2/4 - 8/4 = -9/4
h) f(x) = x² - 2x - 3
a = 1, b = -2 , c = -3
(x - 3)*(x + 1) = 0
x1 = 3, x1 = -1
vértice Vx = -b/2a = 2/2 = 1, Vy = f(1) = 1 - 2 - 3 = -4
x² - 1= 0
a= 1 ; b= 0 c= -1
∆ = b² - 4.a.c
∆ = (0)² - 4.(1).(-1)
∆ = 4
x = -b ± √∆) / 2.a
x = - (0)± √4/ 2.(1)
x = ± 2/2
x'= 2/2
x'= 1
x"= -2/2
x"= -1
Raízes { 1 , -1 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (0)/ 2.(1)
Vx= 0/2
Vx = 0
Vy= - Δ/4.a
Vy= - (4)/4.(1)
Vy= -4/4
Vy= -1
Vértices= ( 0 , -1 )
b) y = x² + 3x + 2
x² + 3x + 2
a = 1 ; b = 3 ; c = 2
∆ = b² - 4.a.c
∆ = (3)² - 4.(1).(2)
∆= 9 -8
∆= 1
x = -b ± √∆) / 2.a
x = - (3)± √1/ 2.(1)
x = -3± 1/2
x' = -3 +1/2 → -2/2
x'= -1
x" = -3 -1/2 → -4/2
x" = -2
Raízes { -1 , -2 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (3)/ 2.(1)
Vx= -3/2
Vy= - Δ/4.a
Vy= - (1)/4.(1)
Vy= -1/4
Vértices = (-3/2 , -1/4)
c) y = x² + x - 2
x² +x - 2 = 0
a = 1 ; b = 1 ; c = -2
∆ = b² - 4.a.c
∆ = (-1)² - 4.(1).(-2)
∆= 1 +8
∆= 9
x = -b ± √∆) / 2.a
x = - (1)± √9/ 2.(1)
x = -1± 3/2
x' = -1+3/2 →2/2
x'= 1
x" = -1-3/2 → -4/2
x" = -2
Raízes { 1, -2 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (1)/ 2.(1)
Vx= -1/2
Vy= - Δ/4.a
Vy= - (9)/4.(1)
Vy= -9/4
Vértices= (-1/2 , -9/4)
d) y = x² - 6x + 9
x²-6x+9 = 0
a= 1 ; b= -6 ; c= 9
∆ = b² - 4.a.c
∆ = (-6)² - 4.(1).(9)
∆ = 36 -36
∆ = 0
x = -b ± √∆) / 2.a
x = - (-6)± √0/ 2.(1)
x = 6 ± 0/2
x' = x" = 3
As coordenadas do vértice:
Vx = - b/2a
Vx = - (-6)/ 2.(1)
Vx = 6/2
Vx = 3
Vy = - Δ/4.a
Vy = 0/4.(1)
Vy= 0
Vértices=(3, 0)
e) y = x² - 4x + 3
x² - 4x + 3=0
a = 1 ; b = -4 ; c = 3
∆ = b² - 4.a.c
∆ = (-4)² - 4.(1).(3)
∆ = 16 -12
∆ = 4
x = -b ± √∆) / 2.a
x = - (-4)± √4/ 2.(1)
x = 4 ± 2/2
x' = 4 +2/2 → 6/2
x'= 3
x" = 4 -2/2 → 2/2
x" = 1
Raízes : { 3 , 1}
As coordenadas do vértice:
Vx= - b/2a
Vx= - (-4)/ 2.(1)
Vx= 4/2
Vx = 2
Vy= - Δ/4.a
Vy= - (4)/4.(1)
Vy= -4/4
Vy= -1
Vértices= (2 , -1)
f) y = x² + 4x + 3
x²+4x+3=0
a =1 ; b = 4 ; c = 3
∆ = b² - 4.a.c
∆ = (4)² - 4.(1).(3)
∆ = 16 -12
∆ = 4
x = -b ± √∆) / 2.a
x = - (4)± √4/ 2.(1)
x = -4 ± 2/2
x' = -4 +2/2 →-2/2
x'= -1
x" = -4 -2/2 →-6/2
x" = -3
Raízes : { -1 , -3}
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (4)/ 2.(1)
Vx= -4/2
Vx = -2
Vy= - Δ/4.a
Vy= - (4)/4.(1)
Vy= -4/4
Vy= -1
Vértices= ( -2 , -1)
g) y = x² - x - 2
x² - x - 2=0
a = 1 ; b = -1 ; c = -2
∆ = b² - 4.a.c
∆ = (-1)² - 4.(1).(-2)
∆= 1+8
∆= 9
x = -b ± √∆) / 2.a
x = - (-1)± √9/ 2.(1)
x = 1± 3/2
x' = 1 + 3/2 → 4/2
x'= 2
x" = 1 - 3/2 → -2/2
x" = -1
Raízes { 2 , -1 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (-1)/ 2.(1)
Vx= 1/2
Vy= - Δ/4.a
Vy= - (9)/4.(1)
Vy= -9/4
Vértices= ( 1/2 , -9/4)
h) y = x² - 2x - 3
x² - 2x - 3=0
a = 1 ; b = -2 ; c = -3
∆ = b² - 4.a.c
∆ = (-2)² - 4.(1).(-3)
∆= 4+12
∆= 16
x = -b ± √∆) / 2.a
x = - (-2)± √16/ 2.(1)
x = 2 ± 4/2
x' = 2+4/2 →6/2
x'= 3
x" = 2 - 4/2 → -2/2
x" = -1
Raízes { 3 , -1 }
As coordenadas do vértice:
Vx= - b/2.a
Vx= - (-2)/ 2.(1)
Vx= 2/2
Vx= 1
Vy= - Δ/4.a
Vy= - (16)/4.(1)
Vy= -16/4
Vy= - 4
Vértices = (1 , -4)
Bons estudos.