Resposta:
dx/dt=3
dy/dt=3*t^(1/2)
C =de 0 a 1 ∫√[ (dx/dt)² + (dy/dt)² ] dt
C =de 0 a 1 ∫√[ (3)² + (3*t^(1/2))² ] dt
C =de 0 a 1 ∫√[ 9 + 9t ] dt
C =de 0 a 1 ∫√[u] dt/9
C= de 0 a 1 [(u^(3/2))/(3/2) ] /9
C= de 0 a 1 [(2/27)*(u^(3/2)) ]
C= de 0 a 1 [(2/27)*((9+9t)^(3/2)) ]
= [(2/27)*((9+9*1)^(3/2)) ] - [(2/27)*((9+9*0)^(3/2)) ]
= [(2/27)*((18)^(3/2)) ] - [(2/27)*((9)^(3/2)) ]
= [(2/27)*((3√2)^(3)) ] - [(2/27)*(27) ]
[(2/27)*((27√2³)) ] - 2 ]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
dx/dt=3
dy/dt=3*t^(1/2)
Então:
C =de 0 a 1 ∫√[ (dx/dt)² + (dy/dt)² ] dt
C =de 0 a 1 ∫√[ (3)² + (3*t^(1/2))² ] dt
C =de 0 a 1 ∫√[ 9 + 9t ] dt
Substitua 9+9t =u ==> 9dt=du
C =de 0 a 1 ∫√[u] dt/9
C= de 0 a 1 [(u^(3/2))/(3/2) ] /9
C= de 0 a 1 [(2/27)*(u^(3/2)) ]
Como u =9+9t
C= de 0 a 1 [(2/27)*((9+9t)^(3/2)) ]
= [(2/27)*((9+9*1)^(3/2)) ] - [(2/27)*((9+9*0)^(3/2)) ]
= [(2/27)*((18)^(3/2)) ] - [(2/27)*((9)^(3/2)) ]
= [(2/27)*((3√2)^(3)) ] - [(2/27)*(27) ]
[(2/27)*((27√2³)) ] - 2 ]
(2)*(√2³) - 2 = 4√2 -2
Letra D