Articles
Register
Sign In
Search
cassiiagabriela16
@cassiiagabriela16
October 2020
1
68
Report
resolver a inequação [tex] \left \{ {{ \frac{x-1}{3} - \frac{x+1}{2} \geq 4 } \atop {1 - \frac{x+2}{3} \geq 0}} \right.[/tex]
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
WemillyC
X - 1 x + 1 2(x - 1) - 3.(x+1) 24
-------- - --------- ≥ 4 => ------------------------ ≥ --------
3 2 6 6
2(x - 1) - 3.(x+1) ≥ 24
2x - 2 - 3x - 3 ≥ 24
2x - 3x ≥ 24 + 2 + 3
-x ≥ 29 . (-1)
x ≤ -29
x + 2 3 x + 2
1 - ---------- ≥ 0 => -------- - ---------- ≥ 0
3 3 3
x + 2 x + 2 3
- ---------- ≥ -1 => - -------------- ≥ - --------- =>
3 3 3
=> - (x - 2) ≥ -3 (-1)
x + 2 ≤ 3
x ≤ 3 - 2
x ≤ 1
2 votes
Thanks 1
More Questions From This User
See All
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
cassiiagabriela16
October 2020 | 0 Respostas
[tex] \left \{ {{x^2-4x+3 \leq 0} \atop {x^2-7x+10>0}} \right. [/tex]
Responda
cassiiagabriela16
October 2020 | 0 Respostas
Responda
×
Report "resolver a inequação [tex] \left \{ {{ \frac{x-1}{3} - \frac{x+1}{2} \geq 4 } \atop {1 - \frac{x+2}{.... Pergunta de ideia de cassiiagabriela16"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
-------- - --------- ≥ 4 => ------------------------ ≥ --------
3 2 6 6
2(x - 1) - 3.(x+1) ≥ 24
2x - 2 - 3x - 3 ≥ 24
2x - 3x ≥ 24 + 2 + 3
-x ≥ 29 . (-1)
x ≤ -29
x + 2 3 x + 2
1 - ---------- ≥ 0 => -------- - ---------- ≥ 0
3 3 3
x + 2 x + 2 3
- ---------- ≥ -1 => - -------------- ≥ - --------- =>
3 3 3
=> - (x - 2) ≥ -3 (-1)
x + 2 ≤ 3
x ≤ 3 - 2
x ≤ 1