Sendo f(x) = sen²x + cos² x + cotg x + cessec x + tg x - sec , então f( vale : a) b) 3 c) 1/3 d) e) -1 --- Sei que a resposta é -1. Mas como chegar até ela? na trigonometria o pi equivale 180°; sec² x + cos² x = 1 ; cosec² x = sen² x; sec = cos; cosec = sen; cotg = 1/tg;
Lista de comentários
f(x) = sen²x + cos²x + cotg(x) + cossec(x) - tg(x) - sec(x)
f(x) = 1 + cotg(x) - tg(x) + cossec(x) - sec(x)
f(x) = 1 + 1/tg(x) - tg(x) + 1/sen(x) - 1/cos(x)
Lembrando que:
sen(π/3) = √3/2
cos(π/3) = 1/2
tg(π/3) = √3
f(π/3) = 1 + 1/tg(π/3) - tg(π/3) + 1/sen(π/3) - 1/cos(π/3)
f(π/3) = 1 + 1/√3 - √3 + 1/[√3/2] - 1/[1/2]
f(π/3) = 1 + 1/√3 - √3 + 2/√3 - 2
f(π/3) = 1 + √3/3 - √3 + 2√3/3 - 2
f(π/3) = 1 + 3√3/3 - √3 - 2
f(π/3) = -1 + √3 - √3
f(π/3) = -1 + 0
f(π/3) = -1