Sabendo que log a=2,log b=3 e log c= -6.Calcule:
a)Log (a³√c)/b²
b)Log(√ab)/√c >>Sendo a raiz de ab com índice 5
Resposta com passo a passo,por favor.
Aplicando as propriedades das potencias
a) Log (a³√c)/b²
log a^3 + log (c)^1/2 - log (b)^2
3 loga + 1/2 log c - 2 log b
3 (2) + 1/2(-6) - 2(3)
6 - 3 - 6
- 3
Log (a³√c)/b² = - 3
b) Log(√ab)/√c >>Sendo a raiz de ab com índice 5
log (ab)^1/5 - log c^1/2
1/5 log a + 1/5 log b - 1/2 log c
1/5 (2) + 1/5 (3) - 1/2 (-6)
2/5 + 3/5 - 3
5/5 - 3
1 - 3
-2
Log(√ab)/√c (Sendo a raiz de ab com índice 5) = - 2
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Aplicando as propriedades das potencias
a) Log (a³√c)/b²
log a^3 + log (c)^1/2 - log (b)^2
3 loga + 1/2 log c - 2 log b
3 (2) + 1/2(-6) - 2(3)
6 - 3 - 6
- 3
Log (a³√c)/b² = - 3
b) Log(√ab)/√c >>Sendo a raiz de ab com índice 5
log (ab)^1/5 - log c^1/2
1/5 log a + 1/5 log b - 1/2 log c
1/5 (2) + 1/5 (3) - 1/2 (-6)
2/5 + 3/5 - 3
5/5 - 3
1 - 3
-2
Log(√ab)/√c (Sendo a raiz de ab com índice 5) = - 2