Resposta:
Letra B), dois zeros
Explicação passo-a-passo:
[tex]7 {}^{ | log_{5}(x) | } = 31 \\ | log_{5}(x) | = log_{7}(31) \\ log_{5}(x) = - log_{7}(31) \\ x = \frac{1}{5 {}^{ log_{7}(31) } } \\ ou \\ x = 5 {}^{ log_{7}(31) }[/tex]
[tex]\displaystyle \sf f(x) = 7^{|\log_5(x)|} \ \ f(x) = 31 \to x = \ ? \\\\\ \text{Fa\c camos}: \\\\ f(x) = 31 \\\\ 7^{|\log_5(x)|} = 31 \\\\ \log(7)^{|\log_5(x)|} = \log 31 \\\\ |\log_5(x) |\cdot \log 7 = \log 31 \\\\ |\log_5(x)| = \frac{\log 31}{\log 7 } \\\\\\ |\log_5(x)| = \log_731 \\\\\\ \log_5(x) = \log_731 \ \ ou \ \ \log_5(x) = -\log_7 31 \\\\[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
Letra B), dois zeros
Explicação passo-a-passo:
[tex]7 {}^{ | log_{5}(x) | } = 31 \\ | log_{5}(x) | = log_{7}(31) \\ log_{5}(x) = - log_{7}(31) \\ x = \frac{1}{5 {}^{ log_{7}(31) } } \\ ou \\ x = 5 {}^{ log_{7}(31) }[/tex]
[tex]\displaystyle \sf f(x) = 7^{|\log_5(x)|} \ \ f(x) = 31 \to x = \ ? \\\\\ \text{Fa\c camos}: \\\\ f(x) = 31 \\\\ 7^{|\log_5(x)|} = 31 \\\\ \log(7)^{|\log_5(x)|} = \log 31 \\\\ |\log_5(x) |\cdot \log 7 = \log 31 \\\\ |\log_5(x)| = \frac{\log 31}{\log 7 } \\\\\\ |\log_5(x)| = \log_731 \\\\\\ \log_5(x) = \log_731 \ \ ou \ \ \log_5(x) = -\log_7 31 \\\\[/tex]
[tex]\displaystyle \sf x = 5^{\displaystyle \log_731} \ \ ou\ \ x = 5^{-\log_731} = \frac{1}{5^{\log_731} } \\\\\ \text{Portanto as solu\c c\~oes s\~ao} : \\\\ \Large\boxed{\sf \ x = 5^{\displaystyle \log_731} \ \ ;\ \ x = \frac{1}{5^{\log_731} } \ }\checkmark[/tex]
letra b ) 2 zeros