Resposta:
[tex]x=\sqrt{2+ \sqrt{2+\sqrt{2+\sqrt{2+....} } } }[/tex]
[tex]x=\sqrt{2+x} } }[/tex]
x²=2+x
x²-x-2=0
x'=(1+√(1+8))/2=(1+3)/2=2
x''=(1-√(1+8))/2=(1-3)/2=-1 , como não pode ser negativo
[tex]\displaystyle \sf 2=\sqrt{4}\\\\ 2=\sqrt{2+2} \\\\ 2 = \sqrt{2+\sqrt{4}}\\\\ 2 = \sqrt{2+\sqrt{2+2}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{4}}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{2+2}}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{4}}}} \\\\ 2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2}}}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}.}}}} \\\\\[/tex]
Podemos repetir o processo infinitas vezes.
portanto :
[tex]\sf x = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}} \\\\\\ \Large\boxed{\sf \ x = 2\ }\checkmark[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
[tex]x=\sqrt{2+ \sqrt{2+\sqrt{2+\sqrt{2+....} } } }[/tex]
[tex]x=\sqrt{2+x} } }[/tex]
x²=2+x
x²-x-2=0
x'=(1+√(1+8))/2=(1+3)/2=2
x''=(1-√(1+8))/2=(1-3)/2=-1 , como não pode ser negativo
x=2
[tex]\displaystyle \sf 2=\sqrt{4}\\\\ 2=\sqrt{2+2} \\\\ 2 = \sqrt{2+\sqrt{4}}\\\\ 2 = \sqrt{2+\sqrt{2+2}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{4}}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{2+2}}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{4}}}} \\\\ 2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2}}}} \\\\ 2 = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}.}}}} \\\\\[/tex]
Podemos repetir o processo infinitas vezes.
portanto :
[tex]\sf x = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}} \\\\\\ \Large\boxed{\sf \ x = 2\ }\checkmark[/tex]