Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf 4^x - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}}}[/tex]
[tex]\sf 2^{2x} - \dfrac{3^{x}}{\sqrt{3}} = 3^{x}\:.\:\sqrt{3} - \dfrac{2^{2x}}{2}}}}[/tex]
[tex]\sf 2\sqrt{3}\:.\:2^{2x} - 2\:.\:3^{x} = 2\sqrt{3}\:.\:3^{x}\:.\:\sqrt{3} - 2^{2x}\:.\:\sqrt{3}[/tex]
[tex]\sf 2\sqrt{3}\:.\:2^{2x} +2^{2x}\:.\:\sqrt{3} = 6\:.\:3^{x} + 2\:.\:3^{x}[/tex]
[tex]\sf 2^{2x}\:.\:(2\sqrt{3} +\sqrt{3}) = 3^x\:.\:(6 + 2)[/tex]
[tex]\sf 2^{2x}\:.\:3\sqrt{3} = 8\:.\:3^x[/tex]
[tex]\sf \dfrac{3^x}{2^{2x}} = \dfrac{3\sqrt{3}}{8}[/tex]
[tex]\sf \left(\dfrac{3}{4}\right)^x = \dfrac{3\sqrt{3}}{8}[/tex]
[tex]\Large \boxed{\sf x = log_{\left(\frac{3}{4}\right)}\left(\dfrac{3\sqrt{3}}{8}\right)}}[/tex]
[tex]\Large \boxed{\sf x = log_{\left(\frac{3}{4}\right)}\left(\dfrac{3}{4}\:.\:\dfrac{\sqrt{3}}{2}\right)}}[/tex]
[tex]\Large \boxed{\sf x = log_{\left(\frac{3}{4}\right)}\left(\dfrac{3}{4}\right) + log_{\left(\frac{3}{4}\right)}\left(\dfrac{3}{4}\right)^\frac{1}{2}}}[/tex]
[tex]\Large \boxed{\sf x = 1 + \dfrac{1}{2}}[/tex]
[tex]\Large \boxed{\sf x = \dfrac{3}{2}}[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf 4^x - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}}}[/tex]
[tex]\sf 2^{2x} - \dfrac{3^{x}}{\sqrt{3}} = 3^{x}\:.\:\sqrt{3} - \dfrac{2^{2x}}{2}}}}[/tex]
[tex]\sf 2\sqrt{3}\:.\:2^{2x} - 2\:.\:3^{x} = 2\sqrt{3}\:.\:3^{x}\:.\:\sqrt{3} - 2^{2x}\:.\:\sqrt{3}[/tex]
[tex]\sf 2\sqrt{3}\:.\:2^{2x} +2^{2x}\:.\:\sqrt{3} = 6\:.\:3^{x} + 2\:.\:3^{x}[/tex]
[tex]\sf 2^{2x}\:.\:(2\sqrt{3} +\sqrt{3}) = 3^x\:.\:(6 + 2)[/tex]
[tex]\sf 2^{2x}\:.\:3\sqrt{3} = 8\:.\:3^x[/tex]
[tex]\sf \dfrac{3^x}{2^{2x}} = \dfrac{3\sqrt{3}}{8}[/tex]
[tex]\sf \left(\dfrac{3}{4}\right)^x = \dfrac{3\sqrt{3}}{8}[/tex]
[tex]\Large \boxed{\sf x = log_{\left(\frac{3}{4}\right)}\left(\dfrac{3\sqrt{3}}{8}\right)}}[/tex]
[tex]\Large \boxed{\sf x = log_{\left(\frac{3}{4}\right)}\left(\dfrac{3}{4}\:.\:\dfrac{\sqrt{3}}{2}\right)}}[/tex]
[tex]\Large \boxed{\sf x = log_{\left(\frac{3}{4}\right)}\left(\dfrac{3}{4}\right) + log_{\left(\frac{3}{4}\right)}\left(\dfrac{3}{4}\right)^\frac{1}{2}}}[/tex]
[tex]\Large \boxed{\sf x = 1 + \dfrac{1}{2}}[/tex]
[tex]\Large \boxed{\sf x = \dfrac{3}{2}}[/tex]