Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{2^{887} > 5^{361}}[/tex]
[tex]\mathsf{2^{7}.2^3.2^{877} > 5^{3}.5^1.5^{357}}[/tex]
[tex]\boxed{\boxed{\mathsf{2^{7}.2^3.(2^{7})^{119}.2^{44} > 5^{3}.5^1.(5^{3})^{119}.1}}}[/tex]
[tex]\mathsf{2^7 > 5^3}[/tex]
[tex]\mathsf{2^3 > 5^1}[/tex]
[tex]\mathsf{(2^{7})^{119} > (5^{3})^{119}}[/tex]
[tex]\mathsf{2^{44} > 1}[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{2^{887} > 5^{361}}[/tex]
[tex]\mathsf{2^{7}.2^3.2^{877} > 5^{3}.5^1.5^{357}}[/tex]
[tex]\boxed{\boxed{\mathsf{2^{7}.2^3.(2^{7})^{119}.2^{44} > 5^{3}.5^1.(5^{3})^{119}.1}}}[/tex]
[tex]\mathsf{2^7 > 5^3}[/tex]
[tex]\mathsf{2^3 > 5^1}[/tex]
[tex]\mathsf{(2^{7})^{119} > (5^{3})^{119}}[/tex]
[tex]\mathsf{2^{44} > 1}[/tex]