Considere A e C invertiveis tais que:


 A^{-1}= \left[\begin{array}{ccc}-2&3&-1\\1&-3&1\\-1&2&-1\end{array}\right]

 C^{-1}= \left[\begin{array}{ccc}1&0&2\\0&1&-1\\0&0&-1\end{array}\right]

a) O sistema linear homogêneo AX= matriz nula, onde,X= \left[\begin{array}{ccc}x\\y\\z\end{array}\right] e matriz nula=X= \left[\begin{array}{ccc}0\\0\\0\\\end{array}\right] , possui soluçao única (trivial) ou infinitas soluções? Justifique sua resposta.

b) Resolva o sistema linear (AC)X=B, onde X= \left[\begin{array}{ccc}x\\y\\z\end{array}\right] e = \left[\begin{array}{ccc}-1\\0\\2\end{array}\right]
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.