[tex]\cfrac{1}{k}\dbinom{n-1}{k-1} \\\\= \cfrac{1}{k} \cdot \cfrac{(n-1)!}{(k-1)!(n-1 - (k-1))!}\\\\= \cfrac{(n-1)!}{k!(n-1 - k + 1)!}\\\\= \cfrac{n(n-1)!}{n \cdot k!(n-k)!}\\\\= \cfrac{1}{n} \cdot \cfrac{n!}{k!(n-k)!} \\\\= \cfrac{1}{n} \dbinom{n}{k}[/tex]
[tex]\boxed{\cfrac{1}{k}\dbinom{n-1}{k-1} = \cfrac{1}{n} \dbinom{n}{k}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
[tex]\cfrac{1}{k}\dbinom{n-1}{k-1} \\\\= \cfrac{1}{k} \cdot \cfrac{(n-1)!}{(k-1)!(n-1 - (k-1))!}\\\\= \cfrac{(n-1)!}{k!(n-1 - k + 1)!}\\\\= \cfrac{n(n-1)!}{n \cdot k!(n-k)!}\\\\= \cfrac{1}{n} \cdot \cfrac{n!}{k!(n-k)!} \\\\= \cfrac{1}{n} \dbinom{n}{k}[/tex]
[tex]\boxed{\cfrac{1}{k}\dbinom{n-1}{k-1} = \cfrac{1}{n} \dbinom{n}{k}}[/tex]