November 2019 1 367 Report
Seja x um número real positivo qualquer. Definimos o logaritmo de x como sendo

\mathsf{log\,x:=\displaystyle\int_{1}^{x}\dfrac{1}{u}\,du}

Utilizando exclusivamente essa definição, mostre que, para quaisquer x, y positivos,

\mathsf{(i)\,\,\,\,\,\,\,log\,x^{\alpha}=\alpha\,log\,x\,\,\,\,\,\forall\,\alpha\in\mathbb{R}}\\\\\mathsf{(ii)\,\,\,\,\,\,log\,xy=log\,x+log\,y}
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.