November 2019 1 456 Report
Teorema de Euler (Álgebra)

Dado dois inteiros m e n com mdc(m,n) = 1, tem-se que

\mathsf{n^{\phi(m)}\equiv1\,(mod\,m)}

Onde \phi(\cdot) é a função Phi de Euler, que, para cada inteiro n, retorna a quantidade de inteiros menores que n que são coprimos com n

Algumas propriedades importantes de \phi:

\bullet\,\,\mathsf{mdc(m,n)=1\,\,\,\Longrightarrow\,\,\,\phi(m\cdot n)=\phi(m)\cdot\phi(n)}\\\\\bullet\,\,\mathsf{\phi(p)=p-1,\,\,onde\,\,p\,\,\'e\,\,primo}}
________________________________

Encontre o resto da divisão de \mathsf{32^{8}+15^{16}} por \mathsf{480=32\cdot15}.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


More Questions From This User See All

Recomendar perguntas

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.