Um quadriculado m × n com m linhas e n colunas, m, n ≥ 2, deve ser preenchido com números do conjunto {−1,0,1} de tal maneira que qualquer quadriculado 2 × 2 contido no quadriculado m × n tenha a soma de seus números igual a zero. Na figura abaixo (ANEXO) tem - se um possível preenchimento de um quadriculado 2 × 3.
Observe o quadriculado de 8×8 células a seguir. Os valores foram preenchidos em grupos de quatro células idênticas de forma que para quaisquer grupos de quatro células adjacentes a soma de seus valores resulta zero.
A) Para um quadriculado de 8×8 a quantidade total de células é 64 e portanto múltiplo de 4, assim para m = 8 e n = 8 a soma (S) de todos os números do quadriculado m × n é zero.
B) Para um quadriculado 3×3 observe que para qualquer situação vale a regra:
S = a − e + i = c − e + g
[tex]\begin{array}{|c|c|c|}\cline{1-3} \bigg \enspace a \enspace & \enspace b \enspace & \enspace c \enspace \\\cline{1-3} \bigg d & e & f \\\cline{1-3} \bigg g & h & i \\\cline{1-3}\end{array} \qquad[/tex]
Para cálculo da soma (S) de todos os valores do quadriculado usando apenas a diagonal principal deve-se alternar o sinal.
S = a − b + c − d + e
S = −1 − (1) − 1 − (1) − 1 = −5
D) O valor máximo da soma (S) para um quadriculado de 5×5 será 5 pois é a quantidade máxima de células na diagonal. O resultado 5 ocorre quando a primeira célula (esquerda superior) é igual a 1.
Observe que para um quadriculado com quantidade de linhas e colunas ímpares a soma pode ser obtida somando os elementos da primeira linha e primeira coluna pois as células restantes serão em quantidade múltiplo de 4 e portanto sua soma é zero.
Aprenda mais em:
brainly.com.br/tarefa/30566128 − Sentença e expressão
Lista de comentários
[tex]\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}[/tex][tex]\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}[/tex][tex]\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}[/tex][tex]\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}\\\begin{array}{|c|c|}\cline{1-2} \bigg -1 & \enspace 0 \enspace \\\cline{1-2} \bigg 0 &1 \\\cline{1-2}\end{array}[/tex]
S = a − e + i = c − e + g
[tex]\begin{array}{|c|c|c|}\cline{1-3} \bigg \enspace a \enspace & \enspace b \enspace & \enspace c \enspace \\\cline{1-3} \bigg d & e & f \\\cline{1-3} \bigg g & h & i \\\cline{1-3}\end{array} \qquad[/tex]
Bloco ①:
[tex]\begin{array}{|c|c|c|}\cline{1-3} \bigg -1 & \enspace 0 \enspace &-1 \\\cline{1-3} \bigg 0 & 1 & 0 \\\cline{1-3} \bigg -1 &0 &-1 \\\cline{1-3}\end{array} \qquad[/tex]
S = −1 − 1 + 1 − 1 − 1 = −3
S = a − e + i = c − e + g
S = −1 − 1 − 1 = −1 − 1 − 1 = −3
Bloco ②:
[tex]\begin{array}{|c|c|c|}\cline{1-3} \bigg \enspace 0 \enspace & -1 & 0 \\\cline{1-3} \bigg 1 & 0 & 1 \\\cline{1-3} \bigg 0 & -1 & \enspace 0 \enspace \\\cline{1-3}\end{array} \qquad[/tex]
S = −1 + 1 + 1 − 1 = 0
S = a − e + i = c − e + g
S = 0 − 0 + 0 = 0 − 0 + 0 = 0
Bloco ③
[tex]\begin{array}{|c|c|c|}\cline{1-3} \bigg \enspace 1 \enspace & \enspace 0 \enspace & \enspace 1 \enspace \\\cline{1-3} \bigg 0 & -1 & 0 \\\cline{1-3} \bigg 1 &0 & 1 \\\cline{1-3}\end{array} \qquad[/tex]
S = 1 + 1 − 1 + 1 + 1 = 3
S = a − e + i = c − e + g
S = 1 − (−1) + 1 = 1 − (−1) + 1 = 3
[tex]\begin{array}{|c|c|c|c|c|}\cline{1-5} \bigg -1 & \enspace 0 \enspace & -1 & \enspace 0 \enspace & -1 \\\cline{1-5} \bigg 0 & 1 & 0 & 1 & 0 \\\cline{1-5} \bigg -1 & 0 & -1 & 0 & -1 \\\cline{1-5} \bigg 0 & 1 & 0 & 1 & 0 \\\cline{1-5} \bigg -1 & 0 & -1 & 0 & -1 \\\cline{1-5}\end{array}[/tex]
S = −1 − 1 − 1 + 1 + 1 − 1 − 1 − 1 + 1 + 1 − 1 − 1 − 1 = −5
S = a − b + c − d + e
S = −1 − (1) − 1 − (1) − 1 = −5
Aprenda mais em:
A)
No quadrilátero 8x8 temos 16 quadriláteros de S=0 cda um,
a soma de todos é 16*0= 0 , a regra mencionada é
para os quadriláteros 2x2
B)
S =a+b+c+d+e+f+g+h+i (i)
a+b+d+e=0 ==>b+d=-a-e (ii)
b+c+e+f=0 ==>b+f=-e-c (iii)
d+e+g+h=0 ==> d+h=-e-g (iv)
e+f+h+i=0 ==> f+h=-e-i (v)
(ii) em (i)
(v) em (i)
S =a+c+e+g+i-a-e-e-i
S =c+g-e =c-e+g
(iii) em (i)
(iv) em (i)
S =a+c+e+g+i-e-c -e-g
S =a+i -e =a-e+i
S = c-e+g=a-e+i c.q.p.
** c.p.q. conforme queríamos provar
C)
a imagem em anexo é deste item
S=a+f+g+h+i+j+b+l+m+n+o+p+c+q+r+s+t+u+d+v+x+y+w+k+e (i)
s+t+x+y=0 (ii)
h+i+m+n=0 (iii)
q+r+d+v=0 (iv)
substitua (ii),(iii) e (iv) em (i)
S=a+f+g+j+b+l+o+p+c+u+w+k+e (v)
u+d+w+k=0 ==>u+w=-d-k (vi)
(vi) em (v)
S=a+f+g+j+b+l+o+p+c-d-k+k+e (vii)
S=a+f+g+j+b+l+o+p+c-d+e (viii)
j+b+o+p=0 ==>o+p=-j-b (ix)
substitua (ix) em (viii)
S=a+f+g+j+b+l-j-b+c-d+e (x)
S=a+f+g+b+l-b+c-d+e (xi)
f+g+b+l =0 ==>f+g=-b-l (xii)
Substitua (xii) em (xi)
S=a-b-l+b+l-b+c-d+e
S=a-b+c-d+e é a resposta, se eu não vacilei, mas a ideia é esta
D)
S=a-b+c-d+e
a=1
b=-1
c=1
d=-1
e=1
==>S=1-(-1)+1-(-1)+1 = 5