December 2019 1 165 Report
Use indução sobre os naturais para mostrar que

|– 1² + 2² – 3² + ... + (– 1)^n · n²| = 1 + 2 + ... + n

ou seja,
\mathsf{\displaystyle\left|\sum_{k=1}^n (-1)^k\cdot k^2\right|=\sum_{k=1}^n k.}

(o módulo da soma alternada dos quadrados dos n primeiros naturais é igual à soma dos n primeiros naturais).
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.